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Abstract. We propose a procedure for measuring semantic relatedness of 

two words using an ontology, or semantic network dictionary. We discuss 

applications of this procedure in detail for lexical, syntactical, and co-

reference disambiguation in natural language processing as well as in ma-

chine translation. In addition, we use a simplified version of this proce-

dure for automatic translation of the semantic network itself into other 

languages. This simplifies creation and maintenance of semantic network 

dictionaries for different languages, thus enabling the described methods 

for processing of texts in languages other than English. 
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1   Introduction 

Natural language processing is a branch of Artificial Intelligence and Computa-

tional Linguistics that studies methodologies and algorithms for automatic anal-

ysis of natural language, in the form of text or speech, and applications of lin-

guistic processing of texts to many tasks important in practice. 

Among various problems that arise in such automatic processing is the prob-

lem of ambiguity: the algorithm should make a choice between two or several 

possible variants of interpretation of the same linguistic unit, such as a word or 

syntactic dependency in a sentence. A promising way of resolving such ambigu-

ities is to select the interpretation most consistent with the context. A specific 

notion of consistency is given by a so-called semantic relatedness measure: a 

numerical measure between the given unit (say, a word) and similar units locat-

ed nearby in the text. Given a suitable semantic relatedness measure, the algo-

rithm should measure the relatedness between all variants of interpretation of 

the given unit and all units in its vicinity and select the one that on average 

gives the best result (the strongest relationship). 

Thus, the study of disambiguation methodologies can be largely reduced to 

the study of different definitions of semantic relatedness measures, and suitabil-
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ity for a particular task, and their calculation basing on the available lexical 

resources. In this paper, we describe a particular semantic relatedness measure 

calculated using a semantic network dictionary such as WordNet [Miller, 1990] 

or FACTOTUM SemNet [Bolshakov et al., 1995b]. 

1.1   The curse of ambiguity 

Probably the most difficult problem that nearly any algorithm dealing with the 

natural language faces is the curse of ambiguity. Be it just one word, or a 

phrase, or a text, very often there are several possible interpretations of what it 

means or what structure it has. We consider ambiguity resolution at all language 

levels the most important problem of natural language processing. To resolve 

the ambiguity, in much larger number of cases than it seems at the first glance, 

complicated reasoning or deep knowledge is necessary, often of semantic, 

pragmatic, or extra-linguistic nature. 

A large number of works on ambiguity resolution employ manually crafted 

marked up text corpora, dictionaries [Luk, 1995], thesauri [Yarowsky, 1992], 

semantic networks [Sussna, 1993; Voorhees, 1993], or a combination of such 

lexical information sources [Yarowsky, 1995]. Still the problem is far from 

being satisfactorily solved. 

In an ideal case, ambiguity resolution should be a side effect of some kind of 

“understanding,” by which we mean construction of some detailed model of the 

whole situation described in the text and embedding it in the world model based 

on pre-existing knowledge, experience, or other texts read. The “true” linguistic 

knowledge, mostly lexical, ideally should be stored in vast dictionaries, such as 

combinatory dictionaries developed in frame of the Meaning  Text theory 

[Mel’cuk, 1974; Steel, 1990], or programmed in sophisticated procedures, such 

as in the Word Expert Parser model [Berleant and Daniel, 1995]. However, 

either manual or automatic compilation of such resources is extremely labor 

consuming and is hardly affordable in the nearest decades. On the other hand, 

such “true understanding” is too demanding computationally to be considered 

now; what is more, there seems to exist evidence that such a way is too compu-

tationally demanding even for human brain. 

A way that is less computationally demanding is to use some pre-constructed 

pieces of “typical” situations and first of all to check the ambiguous construc-

tions against them, addressing to a deeper analysis only when the choice cannot 

be made with simpler processing. Such pre-constructed pieces of information 

can be of different nature, such as syntagmatic, semantic, pragmatic, etc. 

For instance, syntagmatic patterns could be represented by frequently used or 

“meaningful” word combinations, such as take a bus, take a pen, as opposed to 

*take weather [Bolshakov et al., 1995a]. Such a simplified set of syntagmatic 

patterns can be used (and probably is used by a human) in syntactic analysis 

instead of the much more expensive “true understanding.” 

In a similar manner, instead of a computationally demanding reasoning, a set 

of simplified “typical” semantic patterns can be used for disambiguation. Such 
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semantic patters could describe some atomic pieces of typical situations involv-

ing the words of the text. One of the form of representation of such knowledge 

is a semantic network, a set of semantic relationships between words in their 

specific senses. 

1.2   Applications of semantic relatedness measures 

This measure of relatedness is useful for resolving ambiguities of different 

types as well as for related tasks such as automatic translation of texts or even 

dictionaries. For instance, to resolve syntactic ambiguity, a variant of parsing 

should be chosen in which syntactically related words are more closely related 

semantically. To resolve lexical ambiguity between word senses in a context, 

the lexical variant should be chosen that is most closely related to the global or 

local topic of the document, or to the nearest words in the context [Banerjee and 

Pedersen, 2002; Patwardhan et al. 2003].  

Similarly, to resolve referential ambiguity, the closest candidate is chosen to 

the words in the local context. In text translation, if the homonyms are not 

separated in the bilingual dictionary used for translation, the procedure of lexi-

cal disambiguation can be applied in the target language at the stage of text 

generation. Finally, in translation of dictionaries including the semantic net-

work itself, lexical disambiguation can be performed on the reverse translation 

of the results back to the source language. 

Various semantic relatedness measures have been proposed [Budanitsky and 

Hirst, 2001]; some of them are implemented in the freely available Word-

Net::Similarity package [Pedersen et al., 2004]. In this paper, we show how a 

semantic network dictionary can be used to measure the degree of semantic 

relatedness in a typical context between two given words [Gelbukh 1998]. 

The paper is organized as follows. In Section 2, we discuss a methodology 

for distance measurement in a semantic network. In Section 3, we present the 

applications of this methodology in various tasks related to computational lin-

guistics and natural language processing. In Section 4, we discuss computation-

al aspects of our methodology. Finally, Section 5 concludes the paper. 

2   Distance measurements in a semantic network 

In this section, we discuss the basic notions of measuring the semantic distances 

between two given words. The specific algorithms are given in the last section 

of the paper. 

2.1   The structure of a semantic network dictionary 

In our research, we used the FACTOTUM SemNet semantic network dictionary 

[Bolshakov et al., 1995b]. It is an English dictionary, though below we describe 
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how to use it for other languages, our target language being Spanish. There ex-

ist other semantic networks—most notably WordNet [Miller, 1990], which has 

been widely used for natural language processing because of its availability; a 

Spanish version is available in frame of European WordNet project. SemNet, 

however, has a larger number of types and a more flexible representation of 

semantic relationships, making it more suitable for natural language processing 

applications. However, our methodology can be applied to WordNet, too. 

In its logical structure, the SemNet dictionary is a set of so-called relation-

ships between pairs of concepts (in rare cases between sets, here we omit the 

corresponding details for simplicity). 

In SemNet, a concept is usually a word, e.g., book, or a word combination, 

e.g., address book, referring to a specific thing or idea. In most cases textual 

words have several meanings; in this case they are marked with different num-

bers, e.g., bill1 (banknote), versus bill2 (check), bill3 (declaration), bill4 (pike), 

or bill5 (ax). Often such word senses have different translations to other lan-

guages: in Spanish, bill1 is billete, bill2 is cuenta, bill3 is declaración, bill4 is 

pico, and bill5 is hacha.  

All such senses of any word, even closely related ones, have different identi-

fication numbers in the dictionary, are located at different positions, and often 

have different sets of relationships to other words; if needed, they can be con-

nected with each other explicitly by a relationship. Thus, one word (character 

string) can represent different concepts. 

In turn, one concept can be represented by several words. In this case, they 

are considered synonymous in these particular meanings, and are listed together 

in a synset to represent and disambiguate the concept, e.g., {bill1, note, bank-

note}. Thus, generally by a concept we always mean a group of synonymous 

word senses. However, for convenience we name the concepts with just one of 

the words of the synset. 

Relationships are used to connect two (or, rarely, more) concepts. They are 

labeled with different type names, such as IS_A, USES, CAUSES, etc. A rela-

tionship can be viewed as a simple statement expressing a “typical” fact, e.g., 

computer IS_A equipment, explosion CAUSES damage. There are some attrib-

utes, or properties, of individual relationships, like MAYBE, USUALLY, 

RARELY, etc., e.g., seeing MAYBE USES telescope. For human convenience, 

there are different ways to express the same fact in the SemNet dictionary, e.g., 

telescope IS_USED_FOR seeing, though all such expressions can be formally 

converted to a common internal representation. A fragment of such a network is 

shown in the Fig. 1. In this example, we can see that a telescope is a tool to see, 

an animal can have an object, etc. 

In the human-readable form of the dictionary, the most extensive set of rela-

tionships—namely, most of the IS_A relationships—is represented implicitly by 

placing the concepts in hierarchical order in the dictionary. This does not imply 

that a concept may not be a subtype of several concepts, for example, a girl 

IS_A child and IS_A female; in this case, one of the relationships is indicated in 

the dictionary explicitly. 
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Fig. 1. A fragment of a semantic network. 

Many possible relationships can be easily inferred by some general rules 

from other relationships; e.g., transitive relationships like IS_A and 

IS_PART_OF: if a IS_PART_OF b and b IS_PART_OF c, then a 

IS_PART_OF c. In such cases, only some of the relationships—the immediate 

ones—are explicitly included in the dictionary, to keep its size maintainable, 

e.g., car HAS_PART motor and motor HAS_PART screw implies car 

HAS_PART screw. 

Other rules of inference involve particular relationships or groups of relation-

ships. E.g., the most obvious one is that if a IS_A b and b R c, then a R c, where 

R is any relationship. In some cases, such inheritance of characteristics from 

higher categories is defeasible, i.e., it may be blocked explicitly by a special 

notation in the definition of a concept, or it may be canceled where contradicto-

ry information is inherited from more than one higher node. 

2.2   Paths in the semantic network 

The semantic network can be viewed as a graph. A path in such a graph is a 

chain of relationships r1, ..., rn such that ri and ri+1 have exactly one common 

word, i = 1, ..., n – 1. If a word A is the beginning of the path and the word B is 

its end, we say that the path leads from A to B. There are several reasons to use 

paths for measuring the semantic closeness of words in the network. 

First, since some of the relationships are present in the network only implicit-

ly and can be inferred by application of the inference rules, a problem arises of 

generating all the relationships, including the implicit ones, between, say, two 

given words. The problem can be formulated as enumerating all the network 

paths with some special condition that lead from one given word to another.  

Second, in some cases important commonality between words may not be 

expressed in terms of any existing named type of relationship. E.g., on Fig. 1, it 
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can be seen that “a cat CAN HAVE something that IS_USED_FOR seeing.” 

There is no named type of relationship expressing this fact, so we have to repre-

sent the commonality between these two words by just a path of the two rela-

tionships. 

Third, some rules of inference may have fuzzy character, being rather com-

mon-sense observations. Therefore, applying too many rules can make the re-

sult less reliable. In some cases, we can express this loss of reliability by adding 

the MAYBE attribute to the resulting inferred relationship, though in general 

case we should use some kind of lengths, or weights, of relationships and paths, 

as described below. 

Finally, some participants of the situation described in the text may not be 

mentioned explicitly. E.g., in the phrase “The seller asked the buyer for too high 

price” there may be no explicit relationship in the dictionary between the words 

seller and buyer, though the relationship between them can be found through 

the implied actant, goods: buyer CONSUMES goods HAS_SOURCE seller, a 

path of two relationships. 

2.3   Lengths of the relationships and paths 

In general, we need to assign some weight, or “length,” to each relationship and 

calculate the “length” of a path based not just on the number of links in it, but 

also on their individual lengths. This value gives the quantitative estimation of 

how closely related are the two given words, while the path itself with the la-

beled links gives the qualitative estimation of exactly how the two given words 

are related. 

For explicit relationships, such a length can reflect the degree of the im-

portance of the relationship, e.g., IS_A relationships indicate that the words are 

close and probably substitutable for each other in most contexts. On the other 

hand, CONSUMES relationship reflects much less degree of closeness, i.e., it is 

“longer.” 

For inferred relationships, their lengths can depend on the kind of relation-

ships involved in the logical inference (i.e., be an attribute of the corresponding 

rule) and on the length of the logical chain. E.g., many applications of the tran-

sitivity rule for IS_A relationships can increase the length of the resulting IS_A 

relationship. In Fig. 1, it is true but “less reliable” that cat CAN HAVE tele-

scope, due to too many applications of IS_A transitivity rule. The fuzzy charac-

ter of the inference rules is obvious for such relationships as IS_SIMILAR_TO, 

which is “to some degree” transitive. 

For a path, its length should increase with the total length of the constituting 

links. The longer the path between two words, the less semantically related they 

are. 

An easy way to assign the lengths to the links is to relate a specific length 

value to each type of the links, e.g., 1 to IS_A, 5 to SIMILAR_TO, and 20 to 

CAUSED_BY. Such assignment may be context-dependent or may vary ac-

cording to the type of information being retrieved from the text. E.g., in a text 
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with the principal topic “toys” the relationship SIMILAR_APPEARANCE can 

be more important than in a text with another principal topic. We leave such 

considerations for the future. 

Sometimes it might be desirable to assign a length to individual links or 

groups of links. Ideally, each individual link should have some specific length 

expressing the degree of commonality between the two specific words. Assign-

ment of these values hardly can be done by hand; instead, some procedure for 

training on a large corpus might be used in the future. There are cases, though, 

when additional individual coefficients can be assigned automatically.  

For instance, special precautions are to be taken in order to prevent the algo-

rithm from abuse of hierarchical links like IS_A. Namely, any concept referring 

to an object IS_A object: car IS_A object, book IS_A object. Thus, any two 

objects are connected with a path of two (usually implicit) links: car IS_A ob-

ject HAS_SUBTYPE book, which normally should not imply a great degree of 

commonality between them. On the other hand, in some cases a path of two 

IS_A relationships does imply commonality: Ford IS_A car HAS_SUBTYPE 

BMW. 

This problem is already mitigated by assigning to the implicit relationship a 

greater length (corresponding to a weaker relationship) than the length of an 

explicit relationship, when the implicit relationship is computed by application 

of the inference rules. However, the precision of the procedure can be improved 

by assigning the greater length to the hierarchical links located near the top of 

the hierarchy, thus, the length of the link thing IS_A object is more than that of 

the link Ford IS_A car. Namely, on the stage of preparation of the relationships 

database, the maximum number of links is determined from each node to the top 

of the hierarchy, and the links leading to this node are scaled correspondingly. 

For example, in Fig. 2, the distance between Ford and linguist is much great-

er than between Ford and BMW, though both ones are subtypes of object. The 

distance between car and book is greater than the distance between Ford and 

BMW, though in both pairs there are exactly two explicit links between the 

nodes. 

2.4   Shortest paths problem 

To determine the semantic distance between two words, the shortest possible 

path in the network is to be found; its length can be used as an estimation of the 

degree of their semantic nearness. Since not all paths can be acceptable in a 

specific context, in some, and supposedly many, cases the next, then next, etc., 

shortest path should be used to determine the measure of the semantic distance 

between two words in a specific context. E.g., if the context suggests that the 

possible relationship between the two words is USES (expressed by the preposi-

tion with), then even a shorter relationship of the type IS_A cannot be used as a 

measure of closeness between these words in this context. 
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Fig. 2. Different lengths of hierarchical links. 

The curse of ambiguity manifests itself in the full degree in the task of find-

ing such paths. There is virtually infinite number of paths in the network, con-

necting the two given words. The computational aspects of the problem of find-

ing the shortest path are discussed in the last section of the article; here it is 

enough to mention that the problem has well-known solutions and the only 

mathematical issue is computational efficiency. Thus, we will first discuss the 

linguistic applications of such an algorithm, assuming that it operates on a large 

enough semantic network dictionary. 

3   Applications in computational linguistics tasks 

Finding the shortest paths in the semantic network between two given concepts 

and measuring their relatedness in the network in a specific context has numer-

ous applications for disambiguation in language processing and automatic trans-

lation. Note that in practice one can adopt a methodology where different 

sources of evidence and measures of semantic relatedness “vote” for the final 

decision; here we propose one of such “voters.” 

3.1   Syntactical disambiguation 

Consider a phrase “John sees a cat with a telescope.” The phrase is syntactical-

ly ambiguous: does it mean ‘John uses a telescope to see a cat’ or ‘John sees a 

cat that has a telescope,’ or ‘John sees a cat and a telescope,’ or maybe ‘John 

that has a telescope sees a cat,’ etc.? This ambiguity cannot be resolved using 

only lexical or syntactical information, since all the interpretations are syntacti-

cally plausible. 

Most methods employed currently for solving this ambiguity, such as proba-

bilistic grammars, rely on supervised machine learning to learn probabilities of 
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different syntactic links, or, in the case of lexicalized grammars, the probabili-

ties of combining specific words. With this information, a parse variant that 

contains most probable links is preferred to other variants and is chosen as the 

output of the parser. 

While such methods give excellent results, they have certain disadvantages. 

The first disadvantage that we can mention here is the need in manually marked 

up corpora, called treebanks. Such corpora are expensive in development, and 

they do not yet exist for all languages; in fact, such corpora of considerable size 

exist only for a few major languages.  

Another important disadvantage of statistical methods for this task is the data 

sparseness effect: while such training corpora have plenty of examples for fre-

quent phenomena, due to the Zipf distribution law they lack a reliable number 

of examples for less frequent cases. In contrast, manually crafted linguistic re-

sources tend to pay attention to linguistic phenomena irrespectively of their 

frequency, and thus provide information for both frequent and infrequent usage 

cases. 

Therefore, in this paper we will assume so-called symbolic approach, in con-

trast to more widespread statistical approach. The symbolic approach relies on 

manually crafted dictionaries and grammars. In particular, it allows for exploit-

ing existing lexical resources and dictionaries, including those created in pre-

computer era for the use of human readers and not automatic procedures. The 

dictionary we used for this work, FACTOTUM SemNet, is based on the classi-

cal Roget thesaurus, which to some degree guarantees high quality of the infor-

mation it contains. 

In Fig. 3, the first two of abovementioned variants for the analysis of the 

phrase “John sees a cat with a telescope” are presented. The syntactic depend-

encies in question are see  telescope and cat  telescope; what are the se-

mantic relationships between these words? There is a relatively short path be-

tween seeing and telescope in the semantic network dictionary. What is more, 

we can note that the type of the relationship(s) constituting this path agrees with 

the supposed instrumental syntactic relationship between these words in the 

phrase. 

On the other hand, the best path between any sense of cat and telescope that 

agrees with the type of the supposed syntactic dependency is much longer. 

Thus, the variant (1) should be chosen here. This, though, should not prevent 

the linguistic processor from being able to backtrack and revise this decision 

later if the subsequent sentences disagree with this choice. 

Sometimes just the quantitative measure of the nearness (the weighted length 

of the path) can be used for comparison. However, for better quality of analysis 

the whole path should be checked against the expected syntactical type of the 

relationship. E.g., in a phrase “John sees a cat with a boy” there is a short path 

between seeing and boy: boy IS_ABLE see, but the type of the relationship con-

tradicts with the hypothesis that boy here is a tool to see with. This is why the 

procedure for finding the paths should be able to enumerate the paths until an 

acceptable one is found. 
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Fig. 3. Example of syntactic disambiguation process. 

3.2   Lexical disambiguation 

Ambiguity also arises in selection of a particular sense of a word in a phrase. 

Sometimes they can be resolved at syntactic level, usually when the choice is 

made between different parts of speech, e.g., in the phrase “John tables the 

dishes” the word tables is clearly a verb. However, in many cases, especially 

when a word has different meanings within the same part of speech, semantic 

information has to be employed. 

Compare, for example, the phrases “There were fruits and drinks on the ta-

ble” and “The numbers were arranged in a table.” By addressing a semantic 

network, it can be determined that in the first phrase the shortest path exists 

between other words and the sense ‘table as a furniture,’ while in the second 

phrase, the shortest path leads from numbers to ‘table as a picture.’ 

It is not as clear as it is with syntactic ambiguity, with what words in the 

phrase the given word is to be compared. Good candidates can be words close 

in the syntactical structure to the given one. Other good candidates are the 

words describing the main global or local topics of the document. For example, 

if the document in general is on mathematics, the word table will likely be used 

in it as ‘table as a picture,’ even if the nearest words do not suggest this directly. 

Local and global topics of the document can be determined with the approach 

called CLASITEX [Guzmán-Arenas, 1997]. In this approach, all the textual 

words of the document without any preliminary disambiguation are clustered 

with the help of a semantic network dictionary. The centers of the largest clus-

ters represent the main topics of the document. The noise is canceled out since 
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the wrong senses of the words form smaller clusters. This approach can be ap-

plied to a part of the document, revealing the local topics. These topics can also 

be used in the disambiguation process: the distance is to be measured between 

them and the current word being disambiguated. 

Since in the process of disambiguation, many words or word senses (global 

and local topics, surrounding words, etc.) possibly have to be tried and the re-

sults have to be accumulated, the procedure may be computationally demand-

ing. However, in comparison with, say, Word Expert Parser model [Small and 

Rieger, 1982], our procedure requires easier available data and can be used in 

frame of the traditional text processing algorithms. 

3.3   Referential disambiguation 

The problem of referential disambiguation arises each time a pronoun, ellipsis, 

or zero subject (very common in such languages as Spanish) is used in the text. 

In general, at the stage of text analysis such a reference must be replaced with 

another word probably used somewhere in the text. Though there are linguistic 

considerations on selecting the candidates to fill the valence, they usually give 

ambiguous results when only lexical and syntactic information is considered. 

However, it is possible to resolve this task into the task of lexical disambigu-

ation. Namely, when several candidates are to be tried to fill the valence, they 

can be just treated as different “senses” of the pronoun in this particular context. 

Then the procedure described in the previous section can be applied with nearly 

no modifications. The only difference is that neither global nor local topics are 

used in the comparison. 

3.4   Machine translation 

In general, text translation is a quite different task from text understanding. Ide-

ally, translation should include the steps of text understanding in the source 

language and then text generating in the target language. If the ambiguity is 

resolved at the stage of analysis, and if the bilingual dictionary is good enough, 

there should be no problems with ambiguity during text generation. However, in 

real life it is not the case, for both practical and theoretical reasons [Narin’yani, 

1997]. 

In practice, less sophisticated methods are currently used, working mostly at 

the syntactic level. Some of commercially available symbolic-based translation 

systems distinguish the senses of the words only by a limited number of seman-

tic classes or by literal recognition of some number of idioms. E.g., this phrase 

was translated from Spanish by Globalink’s Power Translator Professional: “El 

artista realiza bien el papel”  “The artist accomplishes well the paper” (in-

stead of role). This program, though, does distinguish these senses in some con-

texts: it seems to make choice based on literal recognition of the idiom “jugar 

un papel,” e.g., “El diputado juega un papel importante” gives “The deputy 
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plays a role important,” but: “El diputado juega el papel más importante” gives 

“The deputy plays the most important paper.” For good symbolic-based auto-

matic translation, there must be available (1) a good disambiguation procedure 

in the source language, (2) a good bilingual dictionary that translates one-to-one 

senses to senses, not textual words to sets of words. Both conditions are very 

difficult to satisfy. For example, there might not be available a Spanish diction-

ary to disambiguate the two senses of the word papel. 

In addition, the most elaborated up to date dictionaries, including academic 

dictionaries, usually provide translations of a word into several possible words 

in the target language, e.g.: “papel: paper; document; role; <...>” [Spanish-

English, 1963]. In this case, even if the senses have been disambiguated in the 

source language, the dictionary anyway does not contain the information neces-

sary to translate them one-to-one into words of the target language. 

Our methodology permits to disambiguate the words after translation in the 

target language. As in the previous section, we can treat the ambiguous position 

as a word with several “senses” and then apply the procedure of lexical disam-

biguation to the generated phrase in the target language. 

For instance, in the example above, there is a shorter path in the English se-

mantic network between artist and role than between artist and paper or docu-

ment. This allows us to use a semantic network to improve the results of transla-

tion made with existing bilingual dictionaries, rather than developing new 

sense-to-sense dictionaries, which are expensive to create and difficult to share 

between different systems due to their tight integration with the other modules 

of a linguistic processor. 

3.5   Automatic translation of the semantic network 

Our disambiguation procedure can be applied to automatic or semi-automatic 

translation of the semantic network itself into other languages. Since we have 

taken part in such a translation project (though the work was mainly done by 

hand), we are aware of all the deficiencies of the very idea of translation of a 

semantic network, and of low quality of the resulting dictionary [Bolshakov et 

al., 1995b]. Still there are at least three reasons to translate semantic networks. 

First, creating a semantic network from zero is a very difficult and expensive 

work. If the way the results are used is tolerant to the incompleteness and minor 

inaccuracies, it may be more efficient to use a lower quality dictionary translat-

ed from an existing resource than to wait for a better dictionary to be created in 

the far future. Actually, we believe that due to the nature of the functioning of 

natural language, any language processing software must be tolerant enough to 

incomplete and inaccurate information. However, since the semantic network 

contains mostly the facts about real-world objects and ideas, and in part due to 

commonality between the languages, most of the relationships tend to be trans-

lated correctly (though this may depend on the languages and subject area).  

Second, the linguistic resources for such languages as English, French, Japa-

nese, etc., are maintained by many people and groups all over the world, with 
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much money spent on their development, enlargement, and refinement. It would 

be a waste of effort to repeat all this work in full size for each language. Thus 

for groups that work on, say, Spanish language, to take advantage of the efforts 

spent in the world on development of English semantic networks, it is necessary 

not only to translate the first draft of the dictionary from English, but to be able 

to repeat such translation automatically as new versions of the English diction-

aries become available. There is no need to mention that the existing machine 

translation programs designed for translation of phrases in a discourse are not 

appropriate to translate structured resources such as dictionaries; thus the neces-

sity to create specialized dictionary translation software. 

Third, existing ontologies can be used, such as so-called T2 Reference On-

tology for English. Automatic or semi-automatic procedure for translation of 

this resource can be very useful in maintaining compatibility between semantic 

networks in different languages and the ANSI standard. 

Details of the translation procedure are beyond the scope of this paper. Here 

we only discuss the application of the procedure for enumerating the paths in 

the network between two given points to the task of translation of the semantic 

network itself. However, automatic translation of a semantic network faces the 

same main problem: ambiguity. Each word in each its occurrence in the text of 

the dictionary, presumably in different senses, is translated by an ordinary bi-

lingual dictionary to several different words of the target language. 

The following procedure is proposed to choose the correct variant of the 

translation, using the same (English in our case) semantic network. Each variant 

of translation of a word is translated back to the source language. Then the dis-

tance in the source semantic network is measured between the source word and 

each variant of such a reverse translation. The variant(s) of translation are cho-

sen, at least one of whose reverse translations is located near the source word 

sense in the network, i.e., there is a “short” enough path from this variant to the 

source word sense, see Fig. 4. 

The copy of the source word is removed from the set of the reverse transla-

tions. Words having only one reverse translation, namely the same source word, 

are treated as special cases. They are inserted in the resulting dictionary, and if 

the source word has different senses, such words are marked when automatical-

ly inserted in the dictionary, and then checked by hand. 

In theory, only the words with a reverse translation within the same concept, 

i.e., at the zero distance from the source word, should be accepted. However, in 

practice, a bilingual dictionary in most cases does not gives such accurate re-

sults; therefore, the paths of nonzero length should be taken into account. 

For the set of the paths in the network to be considered, for each textual word 

all its senses should be tried unless any disambiguating information is available 

in the bilingual dictionary; usually it is not. The choice of the candidate is made 

in two steps. First, the weights, i.e., the lengths of the corresponding paths, of 

the reverse translations of each candidate are combined to calculate the weight 

of the candidate itself. Second, the candidate(s) are chosen with the best such 

weight. 
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S o u r c e

w o r d
T h is  r e v e r s e

tr a n s la t io n  is  c lo s e  to

th e  s o u r c e  w o r d .

C o r r e c t

tr a n s la t io n

S o u r c e

n e tw o r k

(E n g lis h ) T h e s e  o n e s  a r e  to o  fa r

fr o m  th e  s o u r c e  w o r d .C a n d id a te s

(S p a n is h )
R e v e r s e

tr a n s la t io n s

(E n g lis h )

W r o n g

tr a n s la t io n s

 

Fig. 4. Translation of a semantic network (two copies of the same network 

are shown to simplify the picture) 

Various procedures can be used for both calculations. To combine the 

weights of the reverse translations for one candidate, in the simplest case a max-

imum (but not average) can be taken. In a more sophisticated procedure, the 

values for all the reverse translations better than some threshold should be ac-

cumulated. To choose the acceptable candidates of translation, in the simplest 

case only the best one is taken for each word, or all the candidates are accepted 

that are better than some threshold value. More sophisticated procedures can 

also be tried. For example, all candidates better than some threshold value 

should be accepted, all candidates worse than some threshold value should be 

rejected, or the best one should be chosen from those candidates whose weight 

falls between these two thresholds. The obtained semantic network dictionary 

may be then post-edited by hand. To be able to repeat the translation as new 

versions of the source dictionary become available, the changes made by hand 

should be saved in a special protocol. 

As compared with the procedure of enumerating the paths used for text pro-

cessing, the procedure used for translation of the dictionary itself can be simpli-

fied by ignoring completely the inference rules, since in this case the meanings 

should be preserved much more precisely. The length of the path can be calcu-

lated as just the number of links in it. This makes the implementation of the 

procedure for translation much more straightforward than for text understand-

ing. 

Inference rules can be used for better results. However, application of each 

rule should substantially increment the length of the path. E.g., a chain of transi-

tive relationships like IS_A should be considered long enough, whereas the 

procedure used for text understanding would use the length near to 1 for such a 

path. The choice here, as well as the selection of the thresholds mentioned 

above, is made on the basis of desired compromise between the accuracy of the 
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translation (less usage of inference, higher thresholds) and the number of words 

that will get any translation at all (more usage of inference, lower thresholds).  

Only basic relationships, such as IS_A and possibly IS_PART_OF and a few 

other, should appear in the paths, but not such relationships as USES, etc.  

4   Computational aspects 

Here we describe the mathematical problem statement and possible algorithms 

for its solution. Generally, a simple modification of Dijkstra’s shortest path-

finding algorithm [Dijkstra, 1959] could suffice, though we present a more so-

phisticated modification, adapted to large sparse networks. 

4.1   Problem statement 

Finding paths in the network is important for computational linguistic applica-

tions, primarily to measure the distance in the network between the two given 

words in a specific context. Usually to measure such a distance in a specific 

context, the shortest paths between the two points are to be found; however, it is 

not always true that necessarily the very short, optimal, path should be found 

first. There are several reasons for this. 

First, there are many restrictions on suitability of particular types of paths in 

a specific context. If, for example, the syntactic relationship between the two 

given words suggests, say, instrumental relationship, then the semantic relation-

ships of any other types, even very short, are useless in this context. Such re-

strictions can be applied after the path is found in the network. Thus, it is prob-

able that the very short path will prove unusable in a specific context; in this 

case, the next path should be retrieved and examined. Thus, there is no point to 

apply a computationally demanding procedure to optimize completely the 

search process. 

Second, the rules for calculating the length of a path in a specific context can 

be context-dependent and complicated. They may be better applied after the 

path has been found. This problem is discussed in more detail below at the end 

of this section. 

Third, the low precision of all language data, including in the first place the 

text itself being analyzed, but also the dictionaries, grammars, etc., makes very 

precise procedures not so necessary. Everything in language is vague; any text 

is full with hints, omissions, implied information, metaphors, rather than being 

a collection of clear and simple logical statements. This makes too precise pro-

cedures of text processing in many cases useless. 

On the other hand, since automatic procedures are applied to huge amounts 

of texts, performance is important, as long as the result of the analysis fits in 

the same confidence interval. Performance is especially important since the 

procedure for semantic distance measurement is invoked very many times in 

typical applications, such as referential disambiguation. 
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Therefore, we can consider the following problem: to enumerate the paths in 

a network between two given nodes, as a tendency starting from shorter ones, 

under the following conditions: 

 Various timeouts apply, e.g., a threshold on the length of the paths: only the 

paths of the length less than a threshold value are considered. 

 Computational effectiveness is a priority. 

 Accuracy is the second priority. Better paths should go first, but only on 

average. 

 The network is large and stored in a database, so that retrieval of the links 

leading from a given point is the most time-consuming operation. 

At each step, we estimate—again, with some probability—the lower limit of 

the length of the paths the procedure can find yet. The importance of this latter 

requirement will be discussed below. We suppose that the calling routine at 

some will moment stop the enumerating process, or some kind of time-out is 

used to prevent the algorithm from infinite work, such as a restriction on the 

number of paths, or on their lengths, so that if the procedure cannot find any 

paths shorter than some threshold, it should stop. In addition, some qualitative 

restrictions may be imposed on the desirable paths, e.g., not to contain a par-

ticular relationship. 

The problem is very similar to the well-known problem of finding the short-

est paths in sparse graphs, e.g., [Shier, 1976; Johnson, 1977; Minieka, 1978]. 

However, there are some differences in the goals and conditions with the classi-

cal problems of optimization. The main differences between the two problems 

are summarized in Table 1. 

Table 1. Comparison of the considered problem and the classical one.  

Classical Optimization Our problem 

There are no restrictions on the length 

of the path. 

Only the paths shorter than some 

threshold value (i.e., short enough ones) 

are considered. 

Only one path is searched for (in 

some variants K paths). 

Paths must be enumerated until the 

caller “accepts” one. 

The very best path must be found. Better paths should generally go first, 

but not necessarily the very best one is 

to be the first. 

The length of a path is a mere sum of 

the lengths, or weights, of the indi-

vidual links. 

The length is calculated according to 

the fuzzy rules of combination of the 

relationships. 

No previously prepared data is usual-

ly used. 

Some data can be prepared in the data-

base in advance. 

The graph is small enough to be kept 

in memory. 

The graph is very big and is stored on 

the hard disk. 
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By better paths, in Table 1 we mean the ones with smaller length, which usu-

ally means ones that contain fewer links or links with smaller lengths. This 

measure is computed as a combination of the lengths of individual links, with 

application of, or taking into account, the rules of inference. E.g., a chain of five 

IS_A relationships may be considered “shorter” than a chain of two 

IS_SIMILAR_TO relationships. In general, such an estimation is a complex 

problem by itself, and we will not describe it here in more detail.  

The measure of length used by the algorithm can differ from the measure that 

is used by the calling procedure, the latter being probably calculated or refined 

by the caller itself with the application of some specific, possibly complex, 

rules, for example, making use of the logical structure of the situation described 

in the text itself. 

This difference arises from our intention to separate the information internal 

to the semantic network from the information used in various applications, and 

to provide a general procedure (probably implemented as a separate module) 

that permits the caller to treat the semantic network as a black box. However, 

some minimal adjustments of the procedure will anyway be necessary for some 

applications; they are discussed below in the sections devoted to the corre-

sponding applications. 

We assume, therefore, that the algorithm should find the paths just good in 

some general meaning, and the caller will check if the path is in fact good for it, 

though the “generally good” paths should be usually good enough for the caller.  

Therefore, the algorithm should not even try to optimize completely the 

enumerating process, since anyway chances are little that the very best in gen-

eral sense path will be the very best for the caller, and we expect usually it will 

not. This changes the approach to the algorithm as compared with the classical 

optimization problems. 

4.2   Algorithms 

While there is extensive research devoted to the shortest paths problem, we are 

not aware of any known algorithm for solving exactly our task. It is not our goal 

in this paper to propose a mathematically refined algorithm, since at the current 

stage of the research we are mostly interested in the linguistic applications of 

the idea itself. However, we describe here some variants of the algorithms we 

currently use. 

4.2.1   The case of equal lengths of the links 

Here we consider a non-weighted graph. A simple algorithm of enumerating all 

the paths, a modification of Dijksatra’s one, is as follows. Define a sphere 

Sr (A) around the point A as the set, actually a tree, of all the paths of the length 

r leading from the point A. (Each path in the tree is compactly represented by 

the ending point, additional characteristics such as the length, and a pointer to 

the previous path in the tree. When a new path is formed by adding one link to 
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the previous one, only such a data structure is to be created in memory.) Since 

we consider here the length of each link in the network to be just 1, the radii of 

the spheres are natural numbers; we can also consider S0 (A) being the empty 

path, i.e., the point A itself. We call the set of ends of all the paths of the sphere 

S (A) its surface. 

The next sphere Si+1 (A) can be formed by adding to Si (A) each link leading 

from each its surface point. If necessary, obvious precautions can be taken to 

prevent the paths being formed from cycles, at least from the cycles formed by 

two copies of the same link passed in the opposite directions; this can be done 

by comparison of the link being added to a path with the immediately previous 

link in the path. Other types of cycles in a sparse network usually do not present 

much problems for our task. 

The algorithm alternates between increasing the spheres S (A) and S (B), 

starting from, say, S (A). At each step, the intersection of the surfaces of the 

spheres Si (A) and Sj (B), j = i or j = i – 1, gives the paths of the length i + j. 

This algorithm enumerates all the paths between A and B, starting from the 

shortest ones. 

In case of an oriented graph, when only the oriented paths from A to B are to 

be found, a simple modification of this algorithm can be used. The sphere 

S+
i+1 (A) should be formed only with the links leading from the points of 

S+
i (A), while the sphere S–

i+1 (B) should be formed only with the links leading 

to the points of S–
i (B). If the paths both from A to B and from B to A are to be 

found, two spheres S+ and S– are maintained for A and B, consisting of the links 

leading to and from the points, correspondingly. If there are other restrictions 

on the types of the paths, they also can be taken into consideration at the step of 

increasing the spheres. 

4.2.2   Different lengths and inference rules 

The algorithm described in the previous section can be generalized to the case 

of weighted graphs. We consider here a modification that not always gives the 

shortest paths first, but does so as a tendency. This algorithm can be easily 

modified to enumerate the paths in the proper order, but with slightly lower 

efficiency. 

In this algorithm, the sets of paths, which we will still call spheres, actually 

are not spheres, i.e., the paths in such “spheres” do not have the same lengths. 

We define these spheres just recursively, the sphere S i+1 (A) being formed by 

adding to Si (A) all the links leading from some of its surface points (we chose 

to add all the links here since the operation of retrieval of the links is the most 

time-consuming). In this case, not all the surface points of Si (A) are expanded, 

instead, expanded are only the paths, usually one path, with the minimal length 

among all the paths of Si (A). The surface of Si+1 (A) is defined by replacing the 

expanded points of the surface of Si (A) with the ends of the newly added links. 

Similarly, the spheres S (A) and S (B) are increased in turn, and the intersec-

tion of their surfaces gives the different paths between A and B. It is easy to 

134

Alexander Gelbukh

Research in Computing Science 47 (2012)



prove that this algorithm enumerates all the paths. Namely, let  us call the mini-

mal length of a path in the sphere its minimal radius. Each step of the algorithm 

increases the minimal radius of one sphere, and if the current minimal radii of 

S (A) and S (B) are r1 and r2, then all the paths with the lengths of r1 + r2 have 

been already enumerated by this moment. 

Our algorithm does not enumerate the paths in the exact order of their length. 

A counter-example can be constructed when two points are connected by two 

long links (thus the length of the path is large) and, in addition, are connected 

by three short links (so that the length of the resulting path is small). In this 

case, the algorithm finds the former path first, while the latter path is shorter.  

 However, generally it tends to enumerate the shorter paths before the longer 

ones. It is possible to store the found paths temporarily without reporting them 

to the output, until the value r1 + r2 reaches the length of a temporarily stored 

path. With this modification, the algorithm will enumerate the paths in the 

proper order. However, for our goals we chose to use the path as soon as the 

algorithm finds it. 

The inference rules and the rules for determining the lengths of different 

combinations of the relationships can be taken into account at the step of in-

creasing the spheres and at the step of determining the intersection of the 

spheres. Namely, when a link is added to the path, the length of the path being 

formed is determined accordingly to the rules of combination of links. Similar-

ly, when a complete path between A and B is formed by connecting together 

two paths, one of S (A) and another of S (B), the length of the combination may 

differ from the sum of the length of the two paths. This contributes in the lack 

of order in enumeration process. However, the shorter paths still tend to be 

enumerated before the longer ones. 

4.2.3. Use of pre-calculated data 

If the network is not a small world graph, the methods described above are good 

only to find short enough paths, since spheres of big radii are too large. In prac-

tice, it may not be a problem if only short paths are important for the applica-

tions. 

However, if longer paths are required, an additional network of “pivot nodes” 

with pre-calculated information about their connections with each other may be 

used. This is similar to the idea of a cellular telephone system, where two 

phones, instead of communicating with each other, communicate with nearby 

nodes of a dense enough network, while those nodes can then communicate 

with each other in a predefined manner. 

For this, at the stage of preparation of the database, nodes are added, or exist-

ing nodes are used, at nearly equal distances from each other and not further 

than some threshold distance from any node in the network. The number of 

such control nodes should be much less than the total number of nodes in the 

network. Information is stored with those nodes to help finding the paths lead-

ing from each of them to each another. To find a path from an arbitrary point A 
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in the network to another point B, first, the paths from each one of these points 

to the nearest pivot node are determined using the method of increasing spheres 

described above. Then, the path between the control nodes is retrieved from the 

database. Finally, the complete resulting path can be varied or optimized locally 

around the retrieved one. 

4.2.4. Multiple comparisons 

Sometimes not only the distance between two given nodes is to be determined. 

Instead, the questions to be answered are as follows: (1) which point in some set 

of points is the nearest to a given one, or (2) what are the two nearest points in a 

two given sets. These problems arise in disambiguation of the binding of a 

prepositional phrase and in referential disambiguation, correspondingly. 

A simple modification of our algorithm allows us to take advantage of alter-

nating between increasing the spheres in turn and of using the same sphere to 

determine the distances from the given point A to each of the points B1, ..., Bn. 

All the spheres are increased, each one in its turn. Suppose we find at least one 

path between A and, say, B1 such that its length is smaller than the sum of the 

minimal radii of the spheres S (A) and S (B2), and no shorter paths have yet 

been found between A and B2. Then the distance between A and B1 is smaller 

than the distance between A and B2. Note that since the paths are retrieved not 

in a completely precise order, the check against the minimal radii is important. 

Given the complicated rules of link combination, the latter criterion is not 

precise, since the length of a path can be different from the sum of the lengths 

of its parts. Currently, we ignore this complication, since we consider the loss 

of precision to be less than normal fuzziness of all data related to natural lan-

guage. In case of serious problems arising in understanding of a particular 

phrase, backtracking can be used later to calculate the distances in question 

more precisely. 

5   Conclusions 

A number of semantic network dictionaries and ontologies are available nowa-

days, mostly for English language, such as WordNet or the FACTOTUM Sem-

Net dictionary. 

We have presented in this paper a simple procedure, namely the search for 

the shortest paths in a sparse network, that can be used for determining the 

measure of semantic relatedness of two given word senses in a very large se-

mantic network. This measure is useful for disambiguation in a variety of im-

portant tasks of natural language processing, such as lexical, syntactic, and ref-

erential disambiguation, as well as in text generation and machine translation.  

In addition, this procedure can be used to translate automatically the semantic 

network dictionary itself into other languages. This makes our methods usable 

for processing of languages other than English. This also simplifies creation and 
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maintenance of semantic network dictionaries for these languages. What is 

more, such automatic translation of a semantic network will be useful in devel-

opment and maintenance of semantic networks in languages other than English, 

which would conform to the ANSI Standard Ontology (T2). 

In our future work, we plan to consider more detailed information for syntac-

tic disambiguation that can be extracted from existing dictionaries [Castro-

Sánchez and Sidorov, 2012]. We also plan to combine methods for improving 

the translation results developed in this paper with statistical methods based on 

alignment of parallel bilingual text corpora [Sidorov et al., 2011]. 

Acknowledgments 

The work was partially supported by CONACYT grant 50206-H, SNI, and FP7-

PEOPLE-2010-IRSES: Web Information Quality – Evaluation Initiative (WIQ-

EI) European Commission project 269180. 

References 

1. [Banerjee and Pedersen, 2002] Banerjee, Satanjeev, and Ted Pedersen. An Adapted 

Lesk Algorithm for Word Sense Disambiguation using WordNet. In: Proceedings of 

CICLing 2002, the Third International Conference on Intelligent Text Processing 

and Computational Linguistics, pp. 136–145, 2002, Mexico City. 

2. [Berleant and Daniel, 1995] Berleant, Daniel. Engineering "word experts" for word 

sense disambiguation. In Natural Language Engineering 1, 1995: pp. 339-362. 

3. [Bolshakov et al., 1995a] Bolshakov, I.A., P.J.Cassidy, A.F.Gelbukh. CrossLexica -

- a dictionary of collocations and thesaurus of the general Russian lexicon  (in Rus-

sian, abstract in English). In Proceedings of International Workshop Dialogue’95: 

Computational Linguistics and its Applications, Khazan, 1995. 

4. [Bolshakov et al., 1995b] Bolshakov, I.A., P.J. Cassidy, A.F. Gelbukh. Parallel 

English and Russian hierarchical thesauri with semantic links, based on an en-

riched Roget’s thesaurus (in Russian, abstract in English). In Proceedings of Inter-

national Workshop Dialogue’95: Computational Linguistics and its Applications, 

Khazan, 1995. 

5. [Budanitsky and Hirst, 2001] Budanitsky, Alexander and Graeme Hirst. Semantic 

distance in WordNet: An experimental, application-oriented evaluation of five 

measures. In: Workshop on WordNet and Other Lexical Resources, Second meeting 

of the North American Chapter of the Association for Computational Linguistics, 

Pittsburgh, June 2001. 

6. [Castro-Sánchez and Sidorov, 2012] Castro-Sánchez, Noé Alejandro and Grigori 

Sidorov. Extracción automática de los patrones de rección de verbos de los diccio-

narios explicativos. Polibits, vol. 45, 2012, pp. 67–74. 

7. [Dijkstra, 1959] Dijkstra, E.W. A note of two problems in connection with graphs. 

Numerische Matematik, 1959, V. 1, pp. 269-271. 

8. [Gelbukh, 1997] Gelbukh, A. Using a Semantic Network for Lexical and Syntactic 

Disambiguation. In Proc. of the International Symposium “CIC-97: Nuevas Aplica-

ciones e Innovaciones Tecnológicas en Computación,” November 12-14, 1997, 

Mexico D.F. 

137

Ontology-based Semantic Relatedness Measures: Applications and Calculation

Research in Computing Science 47 (2012)



9. [Gelbukh, 1998] Gelbukh, A. Using a Semantic Network Dictionary in Some Tasks 

of Disambiguation and Translation. Technical report, Serie Roja, N 36. CIC, IPN, 

1998. 

10.  [Guzmán-Arenas, 1997] Guzmán-Arenas, A. Determining principal themes in a 

Spanish article (in Spanish). In Proc. of the International Symposium “CIC-97: 

Nuevas Aplicaciones e Innovaciones Tecnológicas en Computación,” November 

12-14, 1997, Mexico D.F. 

11. [Johnson, 1977] Johnson, D.B. Efficient algorithms for shortest paths in sparse 

networks. J. ACM, 1997. Vol. 24, N 1, pp. 1-13. 

12. [Luk, 1995] Alpha K. Luk, Statistical Sense Disambiguation with Relatively Small 

Corpora Using Dictionary Definitions. In Proceedings of the 33rd Annual Meeting 

of the Amer. Soc. for Comp. Ling., 1995, pp. 181–188. 

13. [Mel’cuk, 1974] Mel’cuk, Igor A. Experience in theories of Meaning  Text lin-

guistic models (in Russian). Moscow: Nauka, 1974. 

14. [Miller, 1990] Miller, George A., ed. WordNet: An on-line lexical database. Inter-

national Journal of Lexicography, 3, 1990: pp. 235-312. 

15. [Narin’yani, 1997] Narin’yani, A.S. Automatic text understanding – new perspec-

tive (in Russian, abstract in English). In Proceedings of International Workshop 

Dialogue’97: Computational Linguistics and its Applications, Moscow, 1997. 

16. [Patwardhan et al. 2003] Patwardhan, Siddharth, Satanjeev Banerjee, and Ted 

Pedersen. Using Measures of Semantic Relatedness for Word Sense Disambigua-

tion. In Proceedings of CICLing 2003, the Fourth International Conference on Intel-

ligent Text Processing and Computational Linguistics, pp. 241–257, 2003, Mexico 

City. 

17. [Pedersen et al., 2004] Pedersen, Ted, Siddharth Patwardhan, and Jason Michelizzi, 

J. 2004. WordNet::Similarity: Measuring the relatedness of concepts. In HLT-

NAACL 2004, Association for Computational Linguistics, pp. 38–41. 

18. [Shier, 1976] Shier D.R. Iterative methods for determining the K shortest paths in a 

network. In Networks, 1976. Vol. 6, N 3, pp. 205-229. 

19. [Sidorov et al., 2011] Sidorov, Grigori, Juan-Pablo Posadas-Durán, Héctor Jiménez-

Salazar, Liliana Chanona-Hernández. A New Combined Lexical and Statistical ba-

sed Sentence Level Alignment Algorithm for Parallel Texts . International Journal of 

Computational Linguistics and Applications, Vol 2 (1-2), 2011, pp. 257–263. 

20. [Small and Rieger, 1982] Small, S.L., and C.J. Rieger. Parsing and comprehending 

with word experts (a theory and its realization) . In Lehnert and Ringle (eds.), Strat-

egies for Natural Language Processing, 1982, pp. 89-147. 

21. [Spanish-English, 1963] Spanish-English, English-Spanish dictionary, Pocket 

books, Inc. NY, 1963. 

22. [Steel, 1990] Steel, James, ed. Meaning – Text Theory. Linguistics, lexicography, 

and implications. University of Ottawa press, 1990. 

23. [Sussna, 1993] Sussna, M. Word Sense disambiguation for free text indexing using 

a massive semantic network. In: Proceedings of CIKM, 1993. 

24. [Voorhees, 1993] Voorhees, E.M. Using WordNet to disambiguate word sense for 

text retrieval. In Proceedings of ACM SIGIR Conference, 1993, pp. 171-180. 

25. [Yarowsky, 1995] Yarowsky, David. Unsupervised Word Sense Disambiguation 

Rivaling Supervised Methods. In Proceedings of the 33rd Annual Meeting of the 

Amer. Soc. for Comp. Ling., 1995, pp. 189-196. 

26. [Yarowsky, 1992] Yarowsky, David. Word Sense Disambiguation Using Statistical 

Models of Roget's Categories Training on Large Corpora. In Proceedings of 

COLING-92, 1992, pp. 454-460. 

138

Alexander Gelbukh

Research in Computing Science 47 (2012)


